

AMREF INTERNATIONAL UNIVERSITY SCHOOL OF PUBLIC HEALTH DEPARTMENT OF COMMUNITY HEALTH HIGHER DIPLOMA IN COMMUNITY HEALTH END OF SEMESTER EXAMINATION DECEMBER 2024

UNIT CODE: HDCH 015

UNIT NAME: FUNDAMENTALS OF BIOSTATISTICS						
DATE:	WEDNESDAY 3 RD	DECEMBER,	2024			
TIME:	TWO HOURS	START:	4.30PM			

FINISH 6.30PM

INSTRUCTIONS

- 1. This exam is marked out of 60 marks
- This Examination comprises TWO Sections Section A: Compulsory Question (20 Marks) Section B: Long Answer Questions (40 Marks)
- 3. All questions in Section A are compulsory
- 4. Answer any TWO questions in Section B
- 5. This online exam shall take 2 Hours
- 6.Late submission of the answers will not be accepted
- 7.Ensure your web-camera is on at all times during the examination period
- 8.No movement is allowed during the examination
- 9.Idling of your machine for 5 min or more will lead to lock out from the exam
- 10. The Virtual Assessment System (VAS) has inbuilt integrity checks to detect cheating
- 11. Any aspect of cheating detected during and or after the exam administration will lead to disciplinary measures.

12. In case you have any questions call the unit Lecturer Mr. Ephantus Mwangi on +254710725327 or Head of Department Dr. Faith Muhonja on +254723742370 or ICT related question Mr. Patrick Njine on +254725835496

13. For adverse incidences please write an email to: amiu.examinations@amref.ac.ke

SECTION A: COMPULSORY (20 MARKS).

- 1. Distinguish by giving examples in Health systems.
 - a) Variable and Data (2 Marks)
 - b) Null and Alternative Hypothesis
 - c) Descriptive and inferential statistics
- 2. A Doctor provided you with an SPSS output for sample data for patients on smoking status. The Doctor wanted to know whether gender (male/female) is associated with the smoking status. Below is the output:

	Case	Processin	g Summary				
		Cases					
	Va	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent	
Do you smoke cigarettes?*Gender	402	92,4%	33	7.6%	495	100.0%	

Chi-Square Tests							
	Value	df	Asymptotic Significance (2-sided)				
Pearson Chi-Square	3.171 ^a	2	.205				
Likelihood Ratio	3.217	2	.200				
Linear-by-Linear Association	1.106	1	.293				
N of Valid Cases	402						

(2Marks)

(2 Marks)

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 17.76.

Was there a statistical difference between gender and Smoking status, Justify?

(4 Marks)

3. The period starting from initial exposure to the diagnosis of the Monkey pox virus is referred to as the incubation period. Below are the incubation periods, measured in days, for a random sample of 8 individuals infected with Monkey. Calculate the following and interpret the result.

10		9.5	7.2		10	6.3	10.5	7.8	10
	a)	sample me	an				(3mks)	
	b) sample variance and standard deviation and CoV						(4mks)	
	c) Median and the mode						(3mks))	

SECTION B: ANSWER ANY TWO (2) QUESTIONS (40 MARKS).

 A manager provided you with an SPSS output for sample data for workplace study on back pain. The manager wanted to know whether Job stressfulness is associated with the Lower Back pain (LBP). Below is the output.

				our job Isstul?	
			stress free	stressful	Total
Lower Back	NoLBP	Count	96	44	140
pain		% within Lower Back pain	68.6	31.4	100.0%
		% within Is your job stressful?	73.8%	54.3%	66.4%
	LBP	Count	34	37	71
		% within Lower Back pain	47.9%	52.1%	100.0%
		% within Is your job stressful?	26.2%	45.7%	33.6%
Total		Count	130	81	211
		% within Lower Back pain	61.6	38.4%	100.0%
		% within Is your job stressful?	100.0%	100.0%	100.0%

Lower Back pain * is your job stressful? Crosstabulation

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig (1-sided)
Pearson Chi-Square	8.521 ^b	1	.004		
Continuity Correction*	7.669	1	.006		
Likelihood Ratio	8.428	1	.004		
Fisher's Exact Test				.004	.003
Linear-by-Linear	8.481	1	.004		
Association N of Valid Cases	211				

Chi-Square Tests

Case Processing Summary

		Cases				
	Valid		Missing		Total	
	Ν	Percent	N	Percent	N	Percent
Lower Back pain * Is your job stressful?	211	79.0%	56	21.0%	267	100.0%

a)	State the hypothesis	(4mks)
b)	What was the sample size?	(2mks)
c)	Which stress category is greatly affected by the LBP?	(2mks)
d)	Which stress category is least affected by LBP?	(2mks)
e)	Why was the Chi square test appropriate in this case?	(4mks)
f)	Was there a statistical difference between stressful job status and Lower Back Pa	in, Justify?

(6mks)

5. The following table shows hemoglobin levels for miners, compute the probabilities described below.

Class Interval for Hemoglobin (g/cc)	Number of Miners
12.0-17.9	24
18.0-21.9	53
22.0-27.9	13
Total	90

Source: Adapted from Dunn, O. J. (1977). Basic Statistics: A Primer for the Biomedical Sciences, 2nd Edition. Wiley, New York, p. 17.

a) Compute the probability that a miner selected at random from the population has:

i.	a hemoglobin level in the 12.0–17.9 range.	(3mks)
----	--	--------

- ii. a hemoglobin level in the 18.0–21.9 range. (3mks)
- b) During a study, data on the following variables was collected for each patient in a hospital ward (see table). For each of the following variables, state whether it is qualitative or quantitative (type); hence further classify into either nominal, ordinal, discrete or continuous (sub type). (14mks)

Variable	Туре	Sub type
Exact age of a patient (in years)		
Weight (in grams)		
Height (in meters)		
Systolic blood pressure		
Blood type		
Sickness description		
Smoking (Yes or No)		

6. A statistician provides a SPSS output in for a sample dataset that had test scores (out of 100) on four placement tests: English, Reading, Math, and Writing. Below is the output **Descriptive Statistics**

	И	Minimum	Maximum	Mean	Std. Deviation
English	431	59.83	101.95	82.7265	6.82982
Reading	435	55.11	103.62	82.0394	7.63745
Math	435	35.32	93.78	65.4512	8.29165
Writing	435	64.06	93.01	79.5392	5.50151
Valid N (listwise)	431				

Required

a)	What is the sample size?	(2mks)	
b)	Calculate the range of English and Writing test?	(3mks)	
c)	which was the most passed placement test? Justify	(2mks)	
d)	Which was the worst performed placement test? Justify.	(2mks)	
e)	Comment on the std deviation of the placement tests?	(2mks)	
f)	Calculate the coefficient of variance of the Math and reading test?	(4mks)	
g)	Outline steps to conduct hypothesis testing illustrating using a clinical example or case		
		(5mks)	